

Задания заключительного этапа Всероссийской олимпиады студентов «Я – профессионал» по направлению «Арктические технологии»

Категория участия «Магистратура/специалитет»

Вариант 1

Задание № 1

Рассчитать, какую прочность наберет за время остывания от начальной температуры $T_H = 30~^{\circ}\text{C}$ до $T_K = 0~^{\circ}\text{C}$ бетон класса B15 на цементе марки (активности) 400, при расходе цемента $300~\text{кг/m}^3$ в конструкции размером 0,6 (m) х 0,6 (m) и высотой 4,0 (m), возводящейся в стальной опалубке толщиной $\delta_{\Pi\Pi}$. По требованиям проекта к концу остывания бетон должен иметь прочность не менее 60% от проектной.

Расчетные параметры $\boldsymbol{\delta}_{\Pi\Pi}=\mathbf{0},\mathbf{03}$ м, скорость ветра $\boldsymbol{v}=\mathbf{0},\mathbf{0}$ м/с, температура наружного воздуха $T_{\text{н.в.}}=-\mathbf{10}$ °C, c_6 – удельная теплоемкость бетона (для тяжелых бетонов 1,05 кДж/кг°С), γ_6 – плотность бетона 2200-2400 кг/м³, Э – тепловыделение (экзотермия) цемента, 150 кДж/кг, за время твердения бетона (таблица 1), α – коэффициент теплопередачи у наружной поверхности ограждения, B_7/m^2 °С (принимается по таблице 2), δ_i – толщина каждого слоя ограждения, м, λ_i – коэффициент теплопроводности материала каждого слоя ограждения, B_7/m^2 °С (принимается по таблице 3).

При недостаточности, набранной к моменту замерзания прочности принять технологические меры, обеспечивающие требования проекта.

Ответ записать в формате: кол-во часов - температура — прочность % от R_{28} (например, 16 ч - 30°C-59% от R_{28}).

Таблица 1

Тепловыделение цементов (Э) различных видов марок в зависимости от температуры твердения и времени твердения

Вид и марка цемента	Темпера- тура, °С	,	Тепловыделение цементов, кДж/кг при времени их твердения, сут						
	T	0,25	0,5	1	2	3	7	14	28
	5	-	-	25	58	84	167	209	230
Портландцемент	10	8	25	42	84	126	188	230	272
300	20	25	42	75	126	167	230	251	293
	40	50	84	147	188	230	251	293	-
	60	83	147	188	230	272	298	-	-
	5	-		29	63	109	188	209	251
Портландцемент	10	12	25	50	105	146	209	251	293
400	20	42	67	105	167	209	272	314	335
100	40	84	134	188	230	272	314	335	-
	60	130	188	230	272	314	335	-	
	5	12	25	42	89	125	188	230	272
Портландцемент	10	25	42	63	105	167	251	293	314
500, 600	20	42	84	125	188	251	292	335	377
200,000	40	105	167	209	272	293	356	377	-
	60	188	230	272	314	356	377		1-
,	5	25	33	50	105	147	209	251	314
Портландцемент	10	33	50	75	125	167	372	335	377
быстротвердею-	20	63	105	147	209	293	335	377	419
щий 600	40	117	188	230	293	335	377	419	-
	60	209	251	293	335	377	419	-	

Таблица 2

Зависимость а от скорости ветра

Скорость ветра, м/с	α, Bτ/м².∘C	Скорость ветра, м/с	α, Βτ/м²,οС
[*] 0	3,77	5	26,56
1	3,88	10	33,18
3	14,96	15	43,15

Таблица 3 Коэффициент теплопроводности некоторых материалов

Материал	λ, Bτ/m².°C
Бетон (2400 кг/м ³)	1,3–1,6
Вата минеральная	0,05-0,07
Дерево	0,1-0,2
Плита древесно-волокнистая	0,1-0,15
Пенопласт	0,04-0,045
Сталь	52

Таблица 4
Рост относительной прочности бетопа в зависимости от сроков и температуры твердения

<i>T</i> , °C	Прочность бетона R (в % от R_{28}) в зависимости от сроков твердения, сут													
٠.	2	4	6	8	10	12	14	16	18	20	22	24	26	28
50	74	93												
40	58	80	95											
30	59	71	83	90	95	98	100							
20	40	59	68	75	80	85	87	91	94	95	96	97	98	100
10	30	45	55	62	68	72	75	78	80	82	84	85	88	89
5	23	38	47	55	60	64	68	71	73	75	78	79	80	81

Решение:

- 1. Расчет модуля поверхности бетонируемой конструкции M_{Π} по формуле $M_{\Pi}=\frac{F}{\nu}=$ $\frac{9,6}{1.44} = 6,66 \text{ m}^{-1};$
 - поверхность охлаждения конструкции $F = 4 \cdot 0.6 \text{ м} \cdot 4 \text{ м} = 9.6 \text{ м}^2$;
 - объем конструкции V = 0.6м · 0.6м · 4м = 1.44 м³;
- 2. Для средней температуры твердения в период остывания 10-15 °C и примерной продолжительности остывания 3-4 суток принимаем для портландцемента 400 экзотермию Э=150 кДЖ/кг.
- 3. Рассчитываем коэффициент теплопередачи ограждения К: -коэффициент теплопередачи у поверхности ограждения при скорости ветра $\boldsymbol{v}=$ **0**, **0** м/с принимаем $\alpha = 3.77 \frac{BT}{M^2} \cdot ^{\circ}C;$
 - -коэффициент теплопроводности принимаем по табл.3 равным $\lambda = 52~\mathrm{Bt/m^2\cdot ^\circ C}$;
 - -коэффициент теплопередачи ограждения $K = \frac{1}{\frac{1}{\alpha} + \sum_{l=1}^{\delta_l}} = \frac{1}{\frac{1}{3,77} + \frac{0,03}{52}} = 3,76 \text{ BT/m}^2 \cdot ^{\circ}\text{C}$

4. Рассчитываем среднюю температуру бетона за период остывания
$$T_{6.cp.} = T_{\kappa} + \frac{T_{\text{H}} - T_{\kappa}}{1,03 + 0,181 M_{\Pi} + 0,006 \ (T_{\text{H}} - T_{\kappa})} = 0 + \frac{30 - 0}{1,03 + 0,181 \cdot 6,66 + 0,006 (30 - 0)} = 12 ^{\circ}\text{C};$$

5. Рассчитываем продолжительность остывания бетона от +30 до 0°С:

$$\tau = \frac{c_6 \gamma_6 (T_{\text{H}} - T_{\text{K}}) + \text{L}(3)}{3.6 \text{KM}_{\text{II}} (T_{6.\text{CD}} - T_{\text{HB}})} = \frac{1.05 \cdot 2400 \cdot (30 - 0) + 300 \cdot 150}{3.6 \cdot 3.76 \cdot 6.66[12 - (-10)]} = 60.8 \text{ y} \approx 61 \text{ y}.$$

По таблице 4 определяем, что за 2,5 сут. бетон, твердеющий при температуре 12°С, наберет 35% от проектной прочности. По требованиям проекта необходимо к моменту замерзания обеспечить набор бетоном не менее 60% проектной прочности, следует или увеличить начальную температуру бетона Т_н или увеличить термическое сопротивление опалубки, т.е. уменьшит К.

6. Увеличение начальной температуры, переход к горячему термосу, может быть осуществлено путем предварительного разогрева бетонной смеси до непосредственно перед укладкой в конструкцию. Рассмотрим возможность применения, предварительно разогретого до 75°C, бетона. Остывание бетона от T_н=75°C и при всех те же самых условиях, но с увеличением Э=250 кДЖ/кг:

$$\begin{split} T_{6.\text{cp.}} &= T_{\kappa} + \frac{T_{\text{H}} - T_{\kappa}}{1,03 + 0,181 M_{\Pi} + 0,006 \ (T_{\text{H}} - T_{\kappa})} = 0 + \frac{75 - 0}{1,03 + 0,181 \cdot 6,66 + 0,006 (75 - 0)} = 27,9 ^{\circ}\text{C} \approx 28 ^{\circ}\text{C}; \\ \tau &= \frac{c_{6} \gamma_{6} (T_{\text{H}} - T_{\kappa}) + \text{LL}9}{3,6 \text{KM}_{\Pi} (T_{6.\text{cp}} - T_{\text{HB}})} = \frac{1,05 \cdot 2400 \cdot (75 - 0) + 300 \cdot 250}{3,6 \cdot 3,76 \cdot 6,66 [28 - (-10)]} = 77,1 \approx 77 \text{ y.} \\ &\approx 3.2 \text{ cvt.} \end{split}$$

Данные таблицы 4 показывают, что остывание бетона в течение 77 ч. при средней температуре 28°C обеспечивает набор бетоном требуемых 63% от проектной прочности.

ОТВЕТ: 77 ч-28°С-прочность 63% от R_{28}

- 1. Модуль поверхности $6,66 \text{ м}^{-1}$;
- 2. Коэффициент теплопередачи ограждения К=3,76 Вт/м² · °С
- 3. Средняя температура бетона за период остывания 12°С;
- 4. Продолжительность остывания бетона 61 ч (от +30°C до 0°C).
- 5. Средняя температура бетона при переходе к горячему термосу 28°С;

Задание № 2

Рассчитать параметры электропрогрева балки шириной b = 0.5 м, высотой a = 0.8 м и длиной с = 6,0 м с использованием плоских электродных групп. Скорость подъема температуры $\Delta T = 20^{\circ}C$. Изотермический прогрев при температуре $T_{\mu 3} = 60^{\circ}C$, начальная температура бетона $T_{_{H}}=20^{\circ}{\it C}$ температура окружающего воздуха $T_{_{H.B.}}=-20^{\circ}{\it C},$ коэффициент теплопередачи K=1,5 Bт/м²°C, величина удельного электросопротивления бетона $\rho = 3.0 \, \text{Ом} \cdot \text{м}$. Затратами тепла на нагрев опалубки пренебречь.

Рассчитать удельный расход электроэнергии на прогрев бетона до приобретения им 70% проектной прочности. (c_6 – удельная теплоемкость бетона (для тяжелых бетонов 1,05 кДж/кг°С), γ_6 – плотность бетона 2200-2400 кг/м³, напряжение питания U=100 B, радиус электродов r=0,003 м и расстоянием между электродами в группе k=0,1 м. Минимальное напряжение 49 В.

Ответ округлить до сотых: (например, 55,78 кВт*ч на м3)

Таблица 1. Расчет относительной прочности бетона в зависимости от сроков и температуры твердения

T, °C	Про	чность б	етона <i>R</i>	(в % от л тверде		исимост	и от срок	юв
	8	16	24	32	40	48	56	64
80	58	75	83	92	100			
70	49	68	77	81	91	96	100	
60	31	49	62	70	78	84	90	95
50	26	32	58	65	69	74	79	84

Решение:

- 1. Объем прогреваемого бетона: $V = 0.5 \cdot 0.8 \cdot 6 = 2.4 \text{ м}^3$
- 2. Поверхность охлаждения конструкции: $F = (2 \cdot 0.5 + 2 \cdot 0.8) \cdot 6 = 15.6 \text{ м}^2$
- 3. Модуль поверхности конструкции $M_{\Pi} = \frac{15,6}{2,4} = 6,5 \text{ м}^{-1}$
- 4. Средняя за период подъема температура: $T_{cp} = 0.5 \cdot (60 + 20) = 40^{\circ}$ С

5. Мощность
$$P_n$$
, требующаяся в период подъема температуры, определяется как
$$P_n = \frac{1,05\cdot 2400\cdot 20}{3600} + \frac{1,5\cdot 6,5[40-(-20)]}{1000} - 0,8 = 13,79 \text{ кВт/м}^3$$

6. Мощность
$$P_{\text{из}}$$
, требующаяся в период изотермического прогрева, определяется как
$$P_{\text{из}} = \frac{1.5 \cdot 6.5[60 - (-20)]}{1000} = 0.78 \text{ кBT/м}^3$$

7. Мощность P_{VA}

$$h = 100 \sqrt{\frac{10^{-3}}{13,79 \cdot 3}} = 0,49 \text{ M}$$

$$P_{yA} = 10^{-3} \frac{U^2 \cdot \pi}{\rho \cdot k \cdot h} \left(\frac{\pi h}{k} + \ln \frac{k}{2\pi r}\right)^{-1}$$

$$= 0,001 \frac{100^2 \cdot 3,14}{3 \cdot 0,1 \cdot 0,49} \left(\frac{3,14 \cdot 0,49}{0,1} + \ln \frac{0,1}{2 \cdot 3,14 \cdot 0,003}\right)^{-1}$$

$$= 12,38 \text{ kBT/m}^3$$

Всероссийская олимпиада студентов «Я – профессионал»

8. Чтобы перейти к изотермическому прогреву, мощность должна быть уменьшена до величины 0,78 кВт/м³, для чего потребуется изменить(уменьшить) напряжение.

9.
$$U = h \left(\sqrt{\frac{10^{-3}}{P_{yA}\rho}} \right)^{-1} = 0.49 \left(\sqrt{\frac{10^{-3}}{0.78 \cdot 3}} \right)^{-1} = 23 \text{ B.}$$

Т.к. в гамме напряжений трансформатора такое напряжение отсутствует, минимальное 49 В, производим перекоммутацию электродов, подсоединяя электродные группы на период изотермического прогрева к фазам "через одну"

10. Мощность будет выделяться в бетоне при напряжении на электродах U=0,49 В и расстоянии между электродными группами h=0,98 м.

$$P_{yA} = \frac{U^2 \cdot 10^{-3}}{\rho \cdot h^2} = \frac{49^2 \cdot 10^{-3}}{3 \cdot 0.98^2} = 0.83 \text{ kBT/m}^3$$

Согласно таблице 1 для приобретения прочности 70% проектной прочности при температуре 60°C бетон потребуется выдерживать около 32 часов.

В период подъема температуры будет затрачено $(13,79\cdot 3)=41,37$ кВт · ч в период изотермического выдерживания $(0,83\cdot 32)=26,56$ кВт · ч. Удельные затраты на электроэнергию на прогрев бетона до набора прочности 70% проектной прочности составят 41,37+26,56=67,93 кВт*ч на м3.

ОТВЕТ: 67,93 кВт*ч на м3

- 1. Объем прогреваемого бетона 2,4 м³
- 2. Поверхность охлаждения конструкции 15,6 м²
- 3. Модуль поверхности конструкции 6,5 M^{-1}
- 4. Средняя за период подъема температура: 40°C
- 5. Мощность P_n , требующаяся в период подъема температуры 13,79 $\frac{\kappa B T}{M^3}$
- 6. Мощность $P_{\text{из}}$, требующаяся в период изотермического прогрева 0,78 $\frac{\text{кВт}}{\text{м}^3}$
- 7. Мощность $P_{yд}$ 12,38 кВт/м³

Вариант 2

Задание № 1

Рассчитать, какую прочность наберет за время остывания от начальной температуры $T_H = 30~^{\circ}\text{C}$ до $T_K = 0~^{\circ}\text{C}$ бетон класса B15 на цементе марки (активности) 400, при расходе цемента 300 кг/м³ в конструкции размером **0,7 (м) х 0,7 (м) и** высотой **4,0 (м)**, возводящейся в стальной опалубке толщиной $\delta_{\Pi\Pi}$. По требованиям проекта к концу остывания бетон должен иметь прочность не менее 60% от проектной.

Расчетные параметры $\boldsymbol{\delta}_{\Pi\Pi}=\mathbf{0},\mathbf{03}$ м, скорость ветра $\boldsymbol{v}=\mathbf{0},\mathbf{0}$ м/с, температура наружного воздуха $T_{\text{н.в.}}=-\mathbf{20}$ °C, c_6 – удельная теплоемкость бетона (для тяжелых бетонов 1,05 кДж/кг°С), γ_6 – плотность бетона 2200-2400 кг/м³, Э – тепловыделение (экзотермия) цемента, 150 кДж/кг, за время твердения бетона (таблица 1), α – коэффициент теплопередачи у наружной поверхности ограждения, BT/M^2 °С (принимается по таблице 2), δ_i – толщина каждого слоя ограждения, м, λ_i – коэффициент теплопроводности материала каждого слоя ограждения, BT/M^2 °С (принимается по таблице 3).

При недостаточности, набранной к моменту замерзания прочности принять технологические меры, обеспечивающие требования проекта.

Ответ записать в формате: кол-во часов - температура — прочность % от R_{28} (например, 16 ч - 30°C-59% от R_{28})

Таблица 1 Тепловыделение цементов (Э) различных видов марок в зависимости

от темп	ературі	ы твер	дения	ивр	емени	тверд	ения		
Вид и марка цемента	мпера- ра, °С	Тепловыделение цементов, кл							
	Te	0,25	0,5	1	2	3	7		28
	5	-	-	25	58	84	167	209	230
Портионической	10	8	25	42	84	126	188	100000000000000000000000000000000000000	272
Портландцемент 300	20	25	42	75	126	167	230		293
300	40	50	84	147	188	230	251		-
	60	83	147	188	230	272	298		-
	5	_		29	63	109	188	209	251
Попинантической	10	12	25	50	105	146	209		293
Портландцемент 400	20	42	67	105	167	209	272		335
400	40	84	134	188	230	272	314		_
	60	130	188	230	272	314	335	-	-
	5	12	25	42	89	125	188	230	272
Попетанического	10	25	42	63	105	167	251		314
Портландцемент 500, 600	20	42	84	125	188	251	292	100000	377
300, 000	40	105	167	209	272	293	356	377	-
	60	188	230	272	314	356	377	, -	-
,	5	25	33	50	105	147	209	251	314
Портландцемент	10	33	50	75	125	167	372		377
быстротвердею-	20	63	105	147	209	293	335		419
щий 600	40	117	188	230	293	335	377	419	-
10.4	60	209	251	293	335	377	419	-	

Таблица 2

Зависимость а от скорости ветра

Скорость ветра, м/с	α, Bτ/м².∘C	Скорость ветра, м/с	α, Βτ/м²,οС
[*] 0	3,77	5	26,56
1	3,88	10	33,18
3	14,96	15	43,15

Таблица 3 Коэффициент теплопроводности некоторых материалов

Материал	λ, Bτ/m².°C
Бетон (2400 кг/м ³)	1,3–1,6
Вата минеральная	0,05-0,07
Дерево	0,1-0,2
Плита древесно-волокнистая	0,1-0,15
Пенопласт	0,04-0,045
Сталь	52

Таблица 4
Рост относительной прочности бетопа в зависимости от сроков и температуры твердения

<i>T</i> , °C	Прочность бетона R (в % от R_{28}) в зависимости от сроков твердения, сут													
٠.	2	4	6	8	10	12	14	16	18	20	22	24	26	28
50	74	93												
40	58	80	95											
30	59	71	83	90	95	98	100							
20	40	59	68	75	80	85	87	91	94	95	96	97	98	100
10	30	45	55	62	68	72	75	78	80	82	84	85	88	89
5	23	38	47	55	60	64	68	71	73	75	78	79	80	81

Решение:

- 1. Расчет модуля поверхности бетонируемой конструкции M_{Π} по формуле $M_{\Pi} = \frac{F}{V} = \frac{11,2}{1.96} = 5,71 \text{ м}^{-1};$
 - поверхность охлаждения конструкции $F = 4 \cdot 0.7 \text{ м} \cdot 4 \text{ м} = 11.2 \text{ м}^2$;
 - объем конструкции $V = 0.7 \text{м} \cdot 0.7 \text{м} \cdot 4 \text{м} = 1.96 \text{ м}^3$;
- 2. Для средней температуры твердения в период остывания 10-15 °C и примерной продолжительности остывания 3-4 суток принимаем для портландцемента 400 экзотермию Э=150 кДЖ/кг.
- 3. Рассчитываем коэффициент теплопередачи ограждения К:
 - -коэффициент теплопередачи у поверхности ограждения при скорости ветра $\boldsymbol{v} = \mathbf{0}, \mathbf{0}$ м/с принимаем $\alpha = 3.77 \frac{\text{BT}}{\text{M}^2} \cdot {}^{\circ}\text{C};$
 - -коэффициент теплопроводности принимаем по табл.3 равным $\lambda = 52~\mathrm{Bt/m^2\cdot ^\circ C}$;
 - -коэффициент теплопередачи ограждения $K = \frac{1}{\frac{1}{\alpha} + \sum_{k=1}^{\delta_i}} = \frac{1}{\frac{1}{3,77} + \frac{0,025}{52}} = 3,76 \text{ BT/M}^2 \cdot {}^{\circ}\text{C}$
- 4. Рассчитываем среднюю температуру бетона за период остывания

$$T_{\text{6.cp.}} = T_{\text{\tiny K}} + \frac{T_{\text{\tiny H}} - T_{\text{\tiny K}}}{1,03 + 0,181 M_{_{\rm II}} + 0,006 \; (T_{\text{\tiny H}} - T_{\text{\tiny K}})} = 0 + \frac{30 - 0}{1,03 + 0,181 \cdot 5,71 + 0,006 (30 - 0)} = 13,4 ^{\circ}\text{C};$$

5. Рассчитываем продолжительность остывания бетона от +30 до 0°С:

$$\tau = \frac{c_6 \gamma_6 (T_H - T_K) + \text{LL}\Theta}{3.6 \text{KM}_{\Pi} (T_{6.\text{cp}} - T_{HB})} = \frac{1.05 \cdot 2400 \cdot (30 - 0) + 300 \cdot 150}{3.6 \cdot 3.76 \cdot 5.71 [13.4 - (-20)]} = 46.7 \text{ y.} \approx 2 \text{ cyt.}$$

По таблице 4 определяем, что за 2 сут. бетон, твердеющий при температуре 13,4°С, наберет 35% от проектной прочности. По требованиям проекта необходимо к моменту замерзания обеспечить набор бетоном не менее 60% проектной прочности, следует или увеличить начальную температуру бетона $T_{\rm H}$ или увеличить термическое сопротивление опалубки, т.е. уменьшит K.

6. Увеличение начальной температуры, переход к горячему термосу, может быть осуществлено путем предварительного разогрева бетонной смеси до 50-80°С непосредственно перед укладкой в конструкцию. Рассмотрим возможность применения, предварительно разогретого до 75°С, бетона. Остывание бетона от $T_H=75$ °С и при всех те же самых условиях, но с увеличением 9=250 кДЖ/кг:

$$\begin{split} &T_{6.\text{cp.}} = T_{\text{K}} + \frac{T_{\text{H}} - T_{\text{K}}}{1,03 + 0,181 M_{\text{H}} + 0,006 \left(T_{\text{H}} - T_{\text{K}}\right)} = 0 + \frac{75 - 0}{1,03 + 0,181 \cdot 5,71 + 0,006 \left(75 - 0\right)} \approx 30^{\circ}\text{C}; \\ &\tau = \frac{c_{6} \gamma_{6} (T_{\text{H}} - T_{\text{K}}) + \text{Ц}3}{3,6 \text{KM}_{\text{H}} (T_{6.\text{cp}} - T_{\text{HB}})} = \frac{1,05 \cdot 2400 \cdot (75 - 0) + 300 \cdot 250}{3,6 \cdot 3,84 \cdot 5,71 [30 - (-20)]} = 68 \text{ ч.} \approx 2,85 \text{ сут.} \end{split}$$

Данные таблицы 4 показывают, что остывание бетона в течение 68 ч. при средней температуре 30°С обеспечивает набор бетоном требуемых 64% от проектной прочности.

ОТВЕТ: 68 ч-30°С-прочность 64% от R_{28}

- 1. Модуль поверхности $5,71 \text{ м}^{-1}$;
- 2. Коэффициент теплопередачи ограждения К=3,76 Вт/м² · °С
- 3. Средняя температура бетона за период остывания 13,4°С;
- 4. Продолжительность остывания бетона 46,7 ч.
- 5. Средняя температура бетона при переходе к горячему термосу 30°С;

Задание № 2

Рассчитать параметры электропрогрева балки шириной b = 0.5 м, высотой a = 0.8 м и длиной с = 5,0 м с использованием плоских электродных групп. Скорость подъема температуры $\Delta T = 15$ °C. Изотермический прогрев при температуре $T_{\mu 3} = 70$ °C, начальная температура бетона $T_H = 15^{\circ}C$ температура окружающего воздуха $T_{H.B.} = -15^{\circ}C$, коэффициент теплопередачи K=2,0 Bт/м²°C, величина удельного электросопротивления бетона $\rho = 4,0~0$ м · м. Затратами тепла на нагрев опалубки пренебречь.

Рассчитать удельный расход электроэнергии на прогрев бетона до приобретения им 70% проектной прочности. (c_6 – удельная теплоемкость бетона (для тяжелых бетонов 1,05 кДж/кг $^{\circ}$ С), γ_6 – плотность бетона 2200-2400 кг/м 3 , напряжение питания U=100 B, радиус электродов r=0,003 м и расстоянием между электродами в группе k=0,1 м. Минимальное напряжение 49 В.

Ответ округлить до сотых: (например, 55,78 кВт*ч на м3)

Таблица 1. Расчет относительной прочности бетона в зависимости от сроков и температуры твердения

T, °C	Про	очность б	етона <i>R</i>	(в % от л тверде		исимост	и от срок	сов
	8	16	24	32	40	48	56	64
80	58	75	83	92	100			
70	49	68	77	81	91	96	100	
60	31	49	62	70	78	84	90	95
50	26	32	58	65	69	74	79	84

Решение:

- 1. Объем прогреваемого бетона: $V = 0.5 \cdot 0.8 \cdot 5 = 2 \text{ м}^3$
- 2. Поверхность охлаждения конструкции: $F = (2 \cdot 0.5 + 2 \cdot 0.8) \cdot 5 = 13 \text{ м}^2$
- 3. Модуль поверхности конструкции $M_{\Pi} = \frac{13}{2} = 6,5 \text{ м}^{-1}$
- 4. Средняя за период подъема температура: $T_{cp} = 0.5 \cdot (70 + 15) = 42,5$ °C

5. Мощность
$$P_n$$
, требующаяся в период подъема температуры, определяется как
$$P_n = \frac{1,05\cdot 2400\cdot 15}{3600} + \frac{2\cdot 6,5[42,5-(-15)]}{1000} - 0,8 = 10,45 \text{ кВт/м}^3$$

6. Мощность $P_{\text{из}}$, требующаяся в период изотермического прогрева, определяется как $P_{\text{из}} = \frac{2\cdot 6,5[70-(-15)]}{1000} = 1,105 \text{ кВт/м}^3$

$$P_{\text{из}} = \frac{2 \cdot 6,5[70 - (-15)]}{1000} = 1,105 \text{ кВт/м}^3$$

7. Мощность $P_{\text{vд}}$

$$h = 100 \sqrt{\frac{10^{-3}}{10,45 \cdot 4}} = 0,48 \text{ M}$$

Всероссийская олимпиада студентов «Я – профессионал»

$$\begin{split} \mathrm{P}_{\mathrm{y}\mathrm{g}} &= 10^{-3} \frac{U^2 \cdot \pi}{\rho \cdot k \cdot h} \Big(\frac{\pi h}{k} + \ln \frac{k}{2\pi r} \Big)^{-1} \\ &= 0.001 \frac{100^2 \cdot 3.14}{4 \cdot 0.1 \cdot 0.48} \Big(\frac{3.14 \cdot 0.48}{0.1} + \ln \frac{0.1}{2 \cdot 3.14 \cdot 0.003} \Big)^{-1} \\ &= 9.43 \; \mathrm{\kappa Br} / \mathrm{M}^3 \end{split}$$

8. Чтобы перейти к изотермическому прогреву, мощность должна быть уменьшена до

величины 1,105кВт/м³, для чего потребуется изменить(уменьшить) напряжение. 9.
$$U = h \left(\sqrt{\frac{10^{-3}}{P_{y,q}\rho}} \right)^{-1} = 0.48 \left(\sqrt{\frac{10^{-3}}{1,05\cdot 4}} \right)^{-1} = 32,5 \text{ B.}$$

Т.к. в гамме напряжений трансформатора такое напряжение отсутствует, минимальное 49 В, производим перекоммутацию электродов, подсоединяя электродные группы на период изотермического прогрева к фазам "через одну"

10. Мощность будет выделяться в бетоне при напряжении на электродах U=0,49 В и расстоянии между электродными группами h=0,96 м.

$$P_{yд} = \frac{U^2 \cdot 10^{-3}}{\rho \cdot h^2} = \frac{49^2 \cdot 10^{-3}}{4 \cdot 0.96^2} = 0.66 \text{ кВт/м}^3$$

Согласно таблице 1 для приобретения прочности 70% проектной прочности при температуре 70°C бетон потребуется выдерживать около 24 часов.

В период подъема температуры будет затрачено $(10,45 \cdot 5) = 52,25 \text{ кВт} \cdot \text{чв период}$ изотермического выдерживания $(1,105\cdot 24)=26,52\ \mathrm{kBt}\cdot \mathrm{y}$. Удельные затраты на электроэнергию на прогрев бетона до набора прочности 70% проектной прочности составят 52,25+26,52=78,77 кВт*ч на м3.

ОТВЕТ: 78,77 кВт*ч на м3

- 1. Объем прогреваемого бетона 2 м³
- 2. Поверхность охлаждения конструкции: 13 м²
- 3. Модуль поверхности конструкции 6.5 м^{-1}
- 4. Средняя за период подъема температура: 42,5 °C
- 5. Мощность P_n , требующаяся в период подъема температуры 10,45 $\frac{\kappa BT}{M^3}$
- 6. Мощность $P_{\text{из}}$, требующаяся в период изотермического прогрева 1,105 $\frac{\text{кВт}}{\text{мз}}$
- 7. Мощность P_{VA} 9,43 кВт/м³